Au-delà de la scalabilité de ServiceNav, les travaux de recherche avec le LIG ont eu pour objectif de rajouter de l’Intelligence Artificielle dans la supervision afin de répondre aux usages suivants :
- Réduction des faux positifs et des faux négatifs
Le marché fait état d’un nombre de faux positifs variant entre 30 et 80% pour une solution de supervision classique.
Pour exemple : pour une moyenne de 50 incidents par jour, 25 d’entre eux ne sont réellement pas des incidents. Ceci est dû aux seuils mal configurés : soit trop hauts, soit trop bas.
Cela revient à dire que les exploitants passent la moitié de leur temps sur des alertes qui ne sont pas des incidents ou qui sont non prioritaires : temps passé sur des actions inutiles, perte de confiance dans la solution de supervision …
Lorsqu’un problème critique arrive, les équipes d’exploitation se retrouvent en mode « pompier », focalisées sur cette urgence. Que ce soit en journée ou pendant les astreintes, le stress engendré est énorme, la pression exercée par la direction ou les utilisateurs, compliquée à gérer.
Prévoir les incidents avec assez d’anticipation est donc une solution pour un mode de travail organisé et serein, permettant dans le même temps d’obtenir une meilleure qualité de service et donc des taux de disponibilité des applications métiers plus hauts.
- Identifier au plus vite la source d’un problème – Root Cause Analysis
Remonter à la source d’un problème complexe demande du temps. L’objectif est de réduire au maximum ce temps de résolution via une analyse et raisonnement assistés par une intelligence Artificielle.